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Abstract

The flexural-free vibration of a cantilevered beam with multiple cross-section steps is investigated theoretically and

experimentally. Experimental results are compared against Euler–Bernoulli beam theory solutions from Rayleigh–Ritz and

component modal analyses, as well as finite element results using the commercial package ANSYS. Finite elements are also

used to investigate a Timoshenko beam, a two-dimensional shell, and a three-dimensional solid element model.

A detectable difference in the first in-plane bending natural frequency is noted between the beam theory results and those

of the higher-dimensional finite element models and experimental observation. The convergence of the several theoretical

approaches and their effectiveness as analysis and design methods for multiple-stepped beams are also discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The present work considers the accuracy and convergence of the classic Rayleigh–Ritz method, component
modal analysis, and the finite element method as applied to the free vibration analysis of a multiple-stepped
cantilevered beam. Existing work on stepped beams relies heavily on Euler–Bernoulli and Timoshenko beam
theories for both approximate and exact solutions, which are seldom compared with experiment. Using
standard methods, the present investigation addresses the impact of inter-component boundary conditions,
method convergence, and model fidelity on the accuracy of free vibration results for multiple-stepped beams.
A brief review of prior research on stepped beams follows.

Early research by Taleb and Suppiger [1] used the single-stepped beam on simple supports as a test case for
approximate free vibration solutions using the Cauchy iteration method, which provided upper-bound
frequency results. Buckens [2] employed the decomposition method to establish a useful lower bound for the
same stepped beam problem as well as a multiple-stepped beam. Klein [3] adapted a variational component
approach with Lagrange multipliers to explicitly enforce geometric continuity between components; this
method is among those employed in the present work. Yuan and Dickinson [4] incorporated artificial spring
constraints between beam components into the Rayleigh–Ritz energy approach, which yielded accurate
fundamental frequency results. Maurizi and Bellés extended the artificial spring concept to the global
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boundary conditions, including cantilever [5] and other classical support scenarios [6]. Lee and Ng [7] used the
step thickness ratio to compare the suitability of the artificial spring and standard global Rayleigh–Ritz
methods. Popplewell and Chang [8] used the so-called ‘‘force mode functions’’ to improve the global
Rayleigh–Ritz method convergence by introducing discontinuities into the second and third derivatives of the
assumed deflection.

The exact solution by Levinson [9] of the single-stepped beam on simple supports led to further ‘‘exact’’
method investigations for more complicated arrangements. Jang and Bert [10,11] tabulated results for a single,
centrally stepped beam on classical supports using a determinant form of the continuity equations in terms of
the global boundary conditions. Naguleswaran extended this approach to a wide variety of system parameters
[12] and to three step-changes in cross-section [13]. The beneficial effect of dynamic stiffening via judicious
material removal for cantilevered beams was reported and discussed by Subramanian and Balasubramanian
[14] and validated experimentally by Laura et al. [15].

The examples provided in the works referenced above address only the single, centrally stepped beam with
Euler–Bernoulli beam physics. Gorman [16] tabulated exact solutions for different step-discontinuity locations
and for beams with symmetric discontinuities and end supports. The recent work of Koplow et al. [17]
analyzes exactly the dynamic response of a beam with an asymmetric step discontinuity and aligned neutral
axis, including comparisons with a receptance coupling method and experiment. Ju et al. [18] investigated the
implications of shear deformation and step eccentricity for a beam with two steps down using first-order shear
deformation Timoshenko beam theory, noting only a ‘‘slight change’’ in cantilever modal results due to step
eccentricity. Farghaly and Elmahdy [19] reported good agreement between Timoshenko theory predictions
and experiment for beams with several steps down. To the authors’ knowledge, no experimental data exists in
the literature for a cantilevered beam that is both stepped down and stepped up.

2. Analysis

2.1. Rayleigh– Ritz method

The kinetic and strain energies per unit span due to flexural bending are defined, respectively, as

T

L
¼

1

2

Z 1

0

mðxÞ
qw

qt

� �2

dx, (1)

V
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The transverse beam deflection is an assumed series solution:

wðx; tÞ ¼
X

n

qnðtÞW nðxÞ. (3)

The spanwise variable x is scaled by the total beam length L. The mass per unit length is mðxÞ, and EIðxÞ

denotes the flexural rigidity as a function of span. Also, qnðtÞ and W nðxÞ are the nth generalized coordinate and
assumed eigenfunction, respectively.

To obtain the equations of motion, define the Lagrangian as L � T � V and substitute directly L into the
Lagrange’s equations for a conservative system [20]. This results in

d

dt

qL
q _qn

�
qL
qqn

¼ 0. (4)

Assuming the eigenvalue form:

qnðtÞ ¼ q̄ne
iot (5)

leads to a standard generalized eigenvalue problem:

Knmqm ¼ o2Mnmqm. (6)
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The elements of symmetric matrices Mnm and Knm are:

Mnm ¼

Z 1

0

mðxÞW nðxÞW mðxÞdx, (7)

Knm ¼

Z 1

0

EIðxÞ

L4

d2W n

dx2

d2W m

dx2
dx. (8)

Functions W nðxÞ must satisfy the global boundary conditions. In the present work W nðxÞ is the set of
uniform beam eigenfunctions that automatically satisfies the global clamped-free boundary conditions of
the beam:

W nðxÞ ¼
sin an � sinh an

cos an þ cosh an

� �
ðsinh anx� sin anxÞ þ ðcosh anx� cos anxÞ. (9)

For large n, the evaluation of Eq. (9) becomes numerically unstable due to the difference between large values
of the hyperbolic functions. Therefore, an asymptotic approximation from Dowell [21] is used for higher
modes to avoid numerical error:

W nðxÞ ¼ sin anx� cos anxþ e�anx þ ð�1Þnþ1e�anð1�xÞ þO½��. (10)

The order of error is � ¼ e�an , which is negligible for nX5. This approach resolves the ‘‘numerical instability’’
issue of higher approximations using beam modes as reported by Yamada et al. [22].

The Rayleigh–Ritz method mathematically guarantees modal convergence yet requires that only the global
boundary conditions be satisfied. The local geometric boundary conditions are explicitly addressed by
component modal analysis in the next section.

2.2. Component modal analysis

Consider a non-uniform beam partitioned into C uniform components that are individually characterized as
free–free beams. The deflection of the cth component can be written as an extension of Eq. (3):

wðcÞðx̂; tÞ ¼
X

n

qðcÞn ðtÞwnðx̂Þ. (11)

Each component is assumed to be described by the same number of basis functions. The spanwise variable x̂

describes the non-dimensional local coordinate of the cth component. Each component has a spanwise length
lðcÞ and flexural stiffness ðEIÞðcÞ. The eigenfunction wnðx̂Þ is the nth free–free beam mode [23]:

wnðx̂Þ ¼
cos gn � cosh gn

sinh gn � sin gn

� �
ðsinh gnx̂þ sin gnx̂Þ þ ðcosh gnx̂þ cos gnx̂Þ. (12)

The free–free beam eigenvalue gn is the nth root of the following transcendental equation:

1� cos gn cosh gn ¼ 0. (13)

The first eigenfunction is the rigid-body mode corresponding to g1 ¼ 0. An asymptotic form of Eq. (12) is
given by Dowell [21]:

wnðx̂Þ ¼ � sin gnx̂þ cos gnx̂þ e�gnx̂ � ð�1Þne�gnð1�x̂Þ þO½��. (14)

The order of error is � ¼ e�gn as in Eq. (10).
The total system kinetic energy T and linear strain energy V are written as
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where

M ðcÞ
n �MðcÞ

Z 1

0

ðwnðx̂ÞÞ
2 dx. (17)

The cross-terms seen in the Rayleigh–Ritz method do not appear here because the basis functions wnðx̂Þ are
mutually orthogonal over each constant property component. M ðcÞ is the total mass of the cth component.

To incorporate the inter-component compatibility conditions into the Lagrangian formulation, define the
holonomic constraint equations for displacement and slope between components as f cðx̂; tÞ and gcðx̂; tÞ,
respectively:

f cðx̂; tÞ ¼ wðcÞðx̂ ¼ 1; tÞ � wðcþ1Þðx̂ ¼ 0; tÞ, (18)

gcðx̂; tÞ ¼ w0
ðcÞ
ðx̂ ¼ 1; tÞ � w0

ðcþ1Þ
ðx̂ ¼ 0; tÞ. (19)

By definition, the functions f cðx̂; tÞ and gcðx̂; tÞ must equal zero [20]. The root of the first component is
constrained by choosing cantilever beam modes. The tip of the Cth component remains unconstrained.

The constraint equations augment the Lagrangian in the usual fashion using Lagrange multipliers [20]:

L ¼ T � V þ
XC�1
c¼1

ðlcf c þ mcgcÞ. (20)

Lagrange multipliers l and m enforce the continuity of displacement and slope between components,
respectively.

Substitute the modified Lagrangian into Eq. (4) for the constrained equations of motion for each
component:
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w0nð0Þ ¼ 0; c ¼ 2; . . . ;C � 1, (22)

MðCÞ
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EI
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� �ðCÞ
g4nqðCÞn ðtÞ þ lC�1wnð0Þ þ
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lðCÞ
w0nð0Þ ¼ 0. (23)

Substitute Eq. (11) into Eqs. (18) and (19) to describe the constraints in terms of generalized coordinates:X
n

qðcÞn ðtÞwnð1Þ � qðcþ1Þn ðtÞwnð0Þ ¼ 0; c ¼ 1; . . . ;C � 1, (24)

X
n

qðcÞn ðtÞ

lðcÞ
w0nð1Þ �

qðcþ1Þn ðtÞ

lðcþ1Þ
w0nð0Þ ¼ 0; c ¼ 1; . . . ;C � 1. (25)

Klein [3] eliminates the generalized coordinates to arrive at a compact eigenvalue coefficient matrix in terms
of the Lagrange multipliers. The coefficient matrix elements are not of the usual form (e.g. Eqs. (7) and (8)),
but the reorganization reduces the matrix dimensions to the number of Lagrange multipliers [ð2C � 2Þ�
ð2C � 2Þ].

Assume the standard eigenvalue forms of qðcÞn , lc, and mc.

qðcÞn ðtÞ ¼ q̄ðcÞn eiot, (26)

lcðtÞ ¼ l̄ce
iot, (27)

mcðtÞ ¼ m̄ce
iot. (28)
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Solve for the generalized coordinates as functions of Lagrange multipliers using Eqs. (21)–(23):

q̄ð1Þn ¼ �
l̄1wnð1Þ þ ðm̄1=lð1ÞÞw0nð1Þ

F ð1Þn

, (29)

q̄
ðcÞ
i ¼

l̄c�1wnð0Þ þ ðm̄c�1=lðcÞÞw0nð0Þ

F ðcÞn

�
l̄cwnð1Þ þ ðm̄c=lðcÞÞw0nð1Þ

F ðcÞn

; c ¼ 2; . . . ;C � 1, (30)

q̄ðCÞn ¼
l̄Cwnð1Þ þ ðm̄C=lðCÞÞw0nð1Þ

F ðCÞn

, (31)

F ðcÞn � o2M ðcÞ
n � g4n

EI

l3

� �ðcÞ
. (32)

Substitute Eqs. (29)–(31) into the constraint equations (24) and (25) to arrive at the eigenvalue equations and
characteristic equation [3]:

DðoÞ � K ¼ 0, (33)

det½DðoÞ� ¼ 0, (34)

where K is the vector of Lagrange multipliers l̄c and m̄c. The graphical solution of Eq. (34) demonstrates that
the system eigenvalues lie between the component natural frequencies [24,25].
* * * **
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Fig. 2. Spanwise locations of impacts and accelerometer. Dimensions in millimeters.
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Fig. 1. Schematic of uniform and notched aluminum spar test sections (not drawn to scale). Dimensions in millimeters.
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2.3. Finite element method

All finite element calculations were performed by the commercial package ANSYS [26]. Element types
BEAM4, BEAM188, SHELL93, and SOLID45 were used to model Euler–Bernoulli beam, Timoshenko
beam, elastic shell, and three-dimensional elastic solid physics, respectively. The shell and solid element
configurations are herein referred to as higher-dimensional models in contrast to the one-dimensional beam
models.
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Fig. 3. Transfer functions due to flapwise impacts at the spar tip: (a) uniform spar and (b) stepped spar.
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3. Experiment

The natural frequencies of a cantilevered discontinuous beam are obtained experimentally via free vibration
impact testing. A uniform beam of like dimension is used as a control to determine the material properties.

Two identical aluminum spars of dimensions 635mm� 25:4mm� 3:175mm are considered for this
experiment. One spar is end-milled to remove 25:4mm� 6:35mm� 3:175mm sections of material as shown in
Fig. 1. The spar has discontinuous spanwise mass and stiffness distributions at each change in cross-sectional
area.
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Each spar is cantilevered from a vise that is rigidly secured to a heavy table to mimic the clamped boundary
condition. The spars are allowed to deflect out-of-plane (flapwise) under gravity loading. This caused some
prestress from the gravitational loading, but these effects on the natural frequency results were determined to
be negligible.

A transducer-fitted impact hammer (Brüel & Kjær (B&K) type 8204) is used to impart an initial velocity at
the points specified in Fig. 2. An accelerometer (B&K type 4374) connected to a charge amplifier (B&K type
2635) measures the free vibration response at a fixed location. To measure the in-plane (chordwise) bending
modes, the accelerometer is placed on the beam edge at the same spanwise location. The transfer function
between the accelerometer and impact hammer is observed directly from a B&K PULSE data acquisition
system [27], which features a built-in anti-aliasing filter. Each transfer function is averaged linearly over five
hits at each impact location. Every impact is sampled at 256Hz for 8 s to produce a frequency resolution of
125mHz. Figs. 3 and 4 show representative transfer function results as measured from the tips of the uniform
and stepped spars, respectively.

The aluminum density and elastic modulus are r ¼ 2664 kg=m3 and E ¼ 60:6GPa, respectively. The density
is calculated from total mass and dimensional data, and the elastic modulus is calibrated to the first flapwise
resonance:

E ¼
12

a41

L

h

� �2

ro2
1BL2, (35)

where h is the spar thickness. For a uniform Euler–Bernoulli beam, a1 ¼ 1:875 [23].
The measured resonance frequencies are reported in Table 1. The first and second flapwise (out-of-plane)

bending mode frequencies are denoted o1B and o2B, respectively. The first chordwise (in-plane) bending mode
is identified as o1C .

4. Results and discussion

The stepped beam experimental results are compared with the theoretical and finite element values in
Table 2. There is good agreement among the beam theory predictions, including the Timoshenko beam
element results using ANSYS. Therefore, shear deformation and rotary inertia effects have a negligible impact
on the modal results. However, there is a clear difference between the results of all the beam theories and
Table 2

Modal results comparison [Hz] for the notched spar; theoretical results are for 500 degrees-of-freedom

Mode Rayleigh–Ritz CMA ANSYS Experiment

Euler Euler Euler Timoshenko 2D Shell 3D Solid

o1B 10.752 10.816 10.745 10.745 10.44 10.46 10.63

o2B 67.429 67.463 67.469 67.456 65.54 65.70 66.75

o1C 54.795 54.985 54.469 54.429 49.62 49.83 49.38

Table 1

Experimental natural frequencies of uniform and notched spars

Mode type Experiment results [Hz]

Uniform Notched

o1B 11.38 10.63

o2B 71.75 66.75

o1C 85.75 49.38
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experiment for the first chordwise bending mode. Thus, the increase in beam model fidelity considered here
does not resolve the apparent disagreement between analytical and experimental values.

It is clear from Table 2 that the beam methods used do not capture completely the physics of the higher-
dimensional shell and solid element models, whose results agree well with the experimental values. This
disagreement supports the hypothesis that non-beam effects are important for this configuration and are
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Fig. 5. Degree-of-freedom (dof) convergence of the first out-of-plane bending mode, o1B: (a) 100 dof and (b) 500 dof. –, Rayleigh–Ritz;

þ, component modal analysis; �, ANSYS.
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linked directly to the magnitude and geometry of the cross-section discontinuities. To the authors’ knowledge,
the importance of higher-dimensional effects on the modal properties of stepped beams without step
eccentricity has not been previously reported in the literature. Prediction of the resonance frequencies of
multiple-stepped beams without regard for non-beam effects for the present configuration results in a 10%
error for the in-plane resonance.
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Figs. 5–7 compare the solution methods using Euler–Bernoulli theory on a degree-of-freedom (dof) basis.
The finite element method converges the fastest of the three methods for all resonances. For the first in-plane
mode of the presently considered notched beam configuration, the Rayleigh–Ritz method is a poor
approximation for a small number of retained modes, yet converges to a more accurate eigenvalue than the
component modal analysis beyond 25 dof. This result indicates that the local natural boundary conditions
between components are necessary for a better low-order approximation. Also, for greater accuracy a global
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approach yields a better approximation and convergence of the global eigenvalue parameter. The global
approach works better for the out-of-plane modes where the discontinuity is weaker.
5. Conclusion

The three lowest natural frequencies of a multiple-stepped beam are predicted using a global Rayleigh–Ritz
formulation, component modal analysis, and the commerical finite element code ANSYS and are matched
with experimental results from impact testing data. A comparison of the results supports the following
conclusions.

The local boundary conditions between uniform property components are important for low-order
vibration analyses of structures with strong discontinuities. Global methods, such as classical Rayleigh–Ritz,
provide more accurate results for global parameters once either enough degrees-of-freedom are introduced or
the discontinuity strength is sufficiently weak.

The disagreement between beam model and experimental results is modest, but distinct, and is attributed to
non-beam effects present in the higher-dimensional elasticity models, but absent in Euler–Bernoulli and
Timoshenko beam theories. This conclusion is corroborated by predictions from one-, two-, and three-
dimensional finite element models.
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